Homologous mutations near the junction of the sixth transmembrane domain and the third extracellular loop lead to constitutive activity and enhanced agonist affinity at all muscarinic receptor subtypes.
نویسندگان
چکیده
Previous studies have found that a mutation near the junction of the sixth transmembrane domain (TM6) and the third extracellular loop of the M5 muscarinic receptor leads to constitutive activation and enhanced agonist affinity for the mutated receptor. These results were consistent with the extended ternary complex model, which predicts a correlation between agonist affinity and constitutive activity. We have introduced the homologous mutation into all five subtypes of the highly conserved muscarinic receptor family; SerThr-->TyrPro was introduced into M1 and M5, and AsnThr-->TyrPro was introduced into M2, M3, and M4. In binding assays, these mutations produced increases in affinities toward acetylcholine and carbachol that ranged from 5-fold at the M2 receptor to 15- to 20-fold at M1, M3, and M4, to 40-fold at M5. In functional assays, all five mutant receptors exhibited constitutive activity, at levels ranging between 30 and 80% of the maximal response elicited by carbachol. In every case, the muscarinic antagonist atropine inhibited this constitutive activity with high affinity. Thus, despite differences in effector coupling and in wild-type sequence at the mutation site, all five subtypes were activated by this mutation at the top of TM6. Previous studies of the M5 subtype have indicated that TM6 is a ligand-dependent switch that sets the activation state of the receptor. Based on the results of the present study, it is possible that TM6 represents a general switch for the activation of the muscarinic receptor family.
منابع مشابه
Differential modulation of agonist potency and receptor coupling by mutations of Ser388Tyr and Thr389Pro at the junction of transmembrane domain VI and the third extracellular loop of human M(1) muscarinic acetylcholine receptors.
Transmembrane domain VI of muscarinic acetylcholine receptors plays an important role in ligand binding and receptor function. A human M(1) (HM(1)) mutant receptor, HM(1)(S388Y, T389P), displayed significantly enhanced agonist potency, binding affinity, and G protein coupling. The mutations are located at the top of transmembrane domain VI and about two helical turns above Tyr381 and Asn382, wh...
متن کاملPharmacological characterization of human m1 muscarinic acetylcholine receptors with double mutations at the junction of TM VI and the third extracellular domain.
A mutant human m5 receptor containing the mutations of Ser465 to Tyr and Thr466 to Pro showed constitutive activity. By replacing the equivalent Ser388 with Tyr and Thr389 with Pro, we created a mutant human m1 (Hm1) receptor with comparable double mutations. The mutant receptor, Hm1(Ser388Tyr, Thr389Pro), was stably expressed in A9 L cells and displayed enhanced responses to classical muscarin...
متن کاملConstitutive activity and inverse agonism at the M2 muscarinic acetylcholine receptor.
Introduction of a single-point mutation (Asn to Tyr) at position 410 at the junction between transmembrane domain 6 and the third extracellular loop of the human M(2) muscarinic acetylcholine (mACh) receptor generated a mutant receptor (N410Y) that possesses many of the hallmark features of a constitutively active mutant receptor. These included enhanced agonist binding affinity and potency, in...
متن کاملBinding of N-methylscopolamine to the extracellular domain of muscarinic acetylcholine receptors
Interaction of orthosteric ligands with extracellular domain was described at several aminergic G protein-coupled receptors, including muscarinic acetylcholine receptors. The orthosteric antagonists quinuclidinyl benzilate (QNB) and N-methylscopolamine (NMS) bind to the binding pocket of the muscarinic acetylcholine receptor formed by transmembrane α-helices. We show that high concentrations of...
متن کاملA deletion mutation in the third cytoplasmic loop of the mouse m1 muscarinic acetylcholine receptor unmasks cryptic G-protein binding sites.
Mutations were introduced in the highly conserved carboxyl-terminal region of the third cytoplasmic loop of the mouse m1 muscarinic acetylcholine receptor (mAChR) gene by site-directed mutagenesis. The effects of these mutations on ligand binding and on mAChR coupling to phosphoinositide turnover have been examined following expression in mouse Y1 adrenal carcinoma cells, Chinese hamster ovary ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 300 3 شماره
صفحات -
تاریخ انتشار 2002